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Abstract

We present a simple traffic micro-simulation model based on queueing dynamics. Links have a
flow capacity, that is, they do not release more vehicles per second than is possible according
to their capacity. This leads to queue built-up if demand exceeds capacity. Links also have
a storage capacity, which means that once a link is full, vehicles that want to enter the link
need to wait. This leads to queue spill-back through the network. The model is compatible
with route-plan-based approaches such as TRANSIMS, where each vehicle attempts to follow
its pre-computed path. Yet, both the data requirements and the computational requirements
are considerably lower than for the full TRANSIMS microsimulation. Indeed, the model uses
standard emme/2 network data, and runs about eight times faster than real time with more
than 100000 vehicles simultaneously in the simulation on a single Pentium-type CPU.

We derive the model’s fundamental diagrams and explain it. The simulation is used to simu-
late traffic on the emme/2 network of the Portland (Oregon) metropolitan region (20 000 links).
Demand is generated by a simplified home-to-work destination assignment which generates
about half a million trips for the AM peak. Route assignment is done by iterative feedback
between micro-simulation and router. Relaxation of the route assignment for the above prob-
lem can be achieved within about half a day of computing time on a desktop workstation. We
compare results with field data and with results of traditional assignment runs by the Portland
Metropolitan Planning Organization.

Thus, with a model such as this one, it is possible to use a dynamic, activities-based ap-
proach to transportation simulation (such as in TRANSIMS) with affordable data and hard-
ware. This should enable systematic research about the coupling of demand generation, route
assignment, and micro-simulation output.



1 Introduction

In transportation forecasting for planning applications, the generation of the transportation demand
is crucial for useful forecasts. Activity-based demand modeling [1, 2] is a promising technology
here. This means that one attempts to predict people’s activities (work, shop, sleep, etc.) and to
obtain the transportation demand because activities at different locations need to be connected via
transportation. Yet, it is clear that the impedance of the transportation system plays a critical role
for activity patterns and activity locations. For example, high congestion may be an incentive to
drop intermediate stops at home between activities, or it may be an incentive to do activities at
home instead of somewhere else. Thus, a critical part of an activity-based transportation forecasting
system is the representation of the transportation dynamics.

Any such approach needs to achieve “consistency” between modules. By this it is meant that
the congestion assumptions on which people plan their activities need to actually be encountered
when people execute their plans. Otherwise, people will adjust their plans in reaction to the traffic
conditions they just found, and so the result is not stable and thus useless for forecasting.

This consistency criterion between plans-making and transportation dynamics can be formulated
as a fixpoint problem [3, 4, 5]. Fixpoints can, under certain conditions, be found via relaxation.
In our case this means: make all plans; execute the micro-simulation with all plans; let (some or
all) people change their plans according to the simulation result; etc.; until the simulation result
is consistent with people’s expectations. Since for time-dependent problems with a dynamically
correct representation of congestion dynamics no better approach is currently known, this is what
is done by many groups [6, 4, 7, 8].

From a conceptual point of view, there is no need to use a micro-simulation for the representation
of the traffic dynamics. Indeed, traditional assignment models rely on link delay functions, i.e.
link travel times depend directly on the demand. It is clear though that this approach becomes
dynamically wrong once demand is higher than capacity, and queue spill-back spreads through
the system [8, 9]. In how far this is important in practice remains an open question. But since
metropolitan regions are becoming ever more congested, one should develop and test a methodology
that includes a dynamically correct representation of congestion. Monte-Carlo simulations are a
common approach to deal with complex systems such as a congested traffic network. Yet, since
they often exhibit non-linear behavior, they are unlikely to be treatable analytically.

A large scale approach to this problem is currently pursued by the TRANSIMS project [10].
The next TRANSIMS case study will attempt to simulate the whole city of Portland (1.5 million
people) on the level of activities generation, on the level of modal choice and route planning, and on
the level of the transportation and traffic dynamics. The main difference to most other projects will
be that on all levels the approach will model individual people. The advantage of this is that the
approach remains conceptually extensible since the behavioral rules of the individuals are directly
accessible. The challenge with this approach is computational, since the problem is not only big
(1.5 million individuals as said above, and also 200000 links in the transportation network for a
realistic representation), but the relaxation iterations means that the micro-simulation needs to be
run many times (about fifty times for one relaxation).

TRANSIMS approaches this problem via a combination of fast hardware and a computationally
relatively fast traffic simulation approach [11]. Nevertheless, fast hardware is not always available,
such code is data intensive, and it takes time to write. Mostly for the last reason, TRANSIMS



itself uses simplified micro-simulations in order to test the other modules (route planner, activities
planner) and in order to test the interactions (feedback) between the modules. This paper presents
such a simplified micro-simulation. Its input and output are compatible with the TRANSIMS
framework. Thus, with a model such as this one, it is possible to use a dynamic, activities-based
approach to transportation simulation (such as in TRANSIMS) with affordable data and hardware.
If nothing else, this should at least enable systematic research about the coupling of demand gener-
ation, route assignment, and micro-simulation output. In how far the results will be quantitatively
useful remains to be seen.

In this paper, we will (Sec. 2) present our simple approach to traffic dynamics in a road network,
such as a metropolitan area. The dynamics of the model concentrates on the two arguably most
important elements of congestion: capacity cut-offs, and queue spill-back. Capacity cut-offs are
modelled by not letting more vehicles leave a link per time slice than is possible according to that
link’s capacity; and queue spill-back is modelled by a “storage” constraint, i.e. a link can only
absorb a limited number of incoming vehicles. This is followed by a short summary of results for a
Dallas scenario (Sec. 3) and by a description of simulation results for Portland (Sec. 4). The paper
is concluded by a discussion and a summary.

2 Different models based on queueing theory

2.1 “Traditional” queueing models

Queueing theory in its simplest form assumes that a service is provided with a certain rate, and that
requests for the service come in with a certain, usually different, rate. Clearly, when the request
rate is higher than the service rate, a queue for requests will form. Although the precise dynamics
are more complicated, this is also the essential mechanism of capacity cut-off of an urban street
link. The service rate here is generated by a traffic light; and in most cases, the traffic that can
potentially come in towards the traffic light can be higher than the traffic that can go through the
traffic light.

It is maybe obvious that links composed of queues can be connected to reflect regional trans-
portation networks. The service rate of each link/queue would then correspond to the capacity of
that link. An example for such an approach is Ref. [12].

The main question about such models is if they contain the minimal description necessary to
reproduce microscopic traffic characteristics. In fact, the introduction of queues with infinite storage
does not allow the creation of spill backs, so typical of a crowded network. Spill backs are caused
by links that become full, which happens when demand is higher than capacity, i.e. more vehicles
enter the link than can leave. Full links do not accept any further vehicles, thus clogging up links
which contain vehicles that want to enter the full link. In this way, a single link where demand
exceeds capacity can cause congestion to spread through a network.

2.2 (Gawron’s model

In 1997, Gawron introduced a model similar to Simao and Powell’s model in its architecture [13, §].
The main difference from the “traditional” queueing models resides in the modelling of spill-backs.
The number of vehicles leaving a link is constrained by the capacity of the link, and by the number



of cars which can fit on the destination links. If its destination link is full, a vehicle will stay where
it already is.

Each time a car enters a link, an expected travel time is calculated. An early version of this
model proposed to calculate this travel time from the length and the current state of the link. A
fundamental diagram proposes a desired velocity according to the current density [13]. A newer
version only assumes to consider the free flow velocity to calculate the travel time [8]. We will use
the same simulator in this paper and present new results on the Portland network.

2.3 Fundamental diagram

One of the most important features of the queueing model is to produce reasonable travel times
in the laminar and congested regimes. A fundamental diagram can be extrapolated from the
parameters of the model itself. Let us consider a queue with free flow velocity vo in (m/s). We call
L the length of the link, C' its capacity (vehicles/second) and nyuu.s the number of lanes of the link.
The maximum number of vehicles that can be added to the link is Njes = L - Ngpes/site Where we
set the space taken by one vehicle in a jam to the inverse of the jam density: fs. = 1/pjam. For
this paper, I is set to 7.5 meters. The number of sites of the link, Ng;.,, is also the maximum
number of vehicles in the queue. Free flow travel time is given by the relation Ty = L/vj.

For illustration, let us now put N,., vehicles in the queue at time ¢ and suppose that when a
vehicle is allowed to leave the link, it is automatically put at the end of the same queue (“traffic in
a loop with one stop light”). We therefore keep the density constant and define different regimes
according to the density. There are three regimes:

e Laminar regime. In the laminar regime, demand is smaller than capacity. In the queueing
model case, it means that nobody spends more than 7, seconds on the link. The average
velocity is simply given by wg.

e Capacity regime. As soon as the build-up of the queue is longer than what the capacity of
the link can dissolve in Tj seconds, we can consider the queue to be in the congested regime.
In our closed system, this simply means that the first vehicle released from the queue after the
start of the simulation will have moved around the loop and be ready to leave again (according
to Ty) before the vehicle in front of it has left. Since at this point C'Tj vehicles have left the
queue, the critical density for which vehicles begin to wait longer than 7} is given by

_C-T
Nsites .
When the density p is higher than p;, the expression of the travel time can be given by

T =To+ (Nyen — C - Ty)/C = Nyep/C, which simply means that one can leave the link once
all Nyep, vehicles in front have left the link, and this takes a time of Ny, /C.

P1

This leads to the expression for the velocity in the capacity regime:
L Esz'te N, sites C C 1 K

V= = = . :gsite'—'_::_
T Nianes Nveh Nianes P 1Y

where K = lge C/nyanes- The velocity in the capacity regime is thus a product of a model
parameter (£g;.), a link parameter (C/njgnes), and the inverse of the density. — Note that
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some traffic flow models have v % - p% as their functional form [14], where pj4y, is the

jam

density of traffic in a jam.

e Jammed regime. The velocity goes towards zero when the queue is almost full and vehicles
have difficulties leaving the queue because there is no space available on the destination link.
For this, it is easier to imagine that the closed loop is composed of two links. During one time
step, the first link is picked. Vehicles leave until all empty spaces in the second link are filled
up, and vehicles are moved forward on the first link. Then, the same happens for the second
link. Clearly, the number of vehicles n that leave the link per time step is the same as the
number of empty sites, i.e. n = Nepmpry. Since n is also the same as the flow, i.e. n = ¢, and
since the density is p = (Nsites — Mempty)/Nsites, 0ne obtains ¢ = Nies (1 — p). The link is in
this regime for

1Y > P2 = 1- C/Nsites .

A typical fundamental diagram would look like Fig. 1. Velocities in the queueing model do not go
“smoothly” to zero for p — 1, as for example a function v ~ % — 1 pjam would do; instead, they
have a “kink” at p = 1 — C//Ngjes. The velocity here is K - L/(L — K). This means that if the link
is long enough, this value is close to K, which depending on the characteristics of the link, is not
necessarily close to zero.

The physical reason for this is that, in the queue model, “holes” can travel in one time step from
the beginning of the link to its the end. This is opposed to real traffic, where, say, a light turns
green, then the first car moves and opens up space for the second, then the second car moves and
opens up space for the third, and it takes quite some time until this effect has travelled up a link.

The consequence of this behavior for traffic simulation purposes is that simulated traffic will be
more “fluid” in the very congested regime than when using a model where speed goes “smoothly”
to zero for p — 1. Having somewhat fluid traffic in the very congested regime is not necessarily a
disadvantage since, in a network context, current simulation models seem to grid-lock more easily
than reality [15, 16].

2.4 Algorithm of the queueing model

The description in the last section should be sufficient to implement a model similar to ours.
Nevertheless, in this section we present a more precise description of our algorithm.

e FOR all links DO:

— WHILE ( vehicles can still leave in this time step according to the capacity ) DO

x Look at the first vehicle in the queue.

x If the free flow speed arrival time is larger than the current time, then break and go
to the next link.

x Check if the destination link has space. If not, break and go to the next link.

x Calculate the expected arrival time on the end of the next link:
Arrival time = Current time + length /freeFlowSpeed
(length and freeFlowSpeed of the destination link)
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x If passing is allowed, insert vehicle into the destination queue sorted by time
x If passing is not allowed, insert vehicle at the end of the destination queue

ENDWHILE
ENDFOR

The precise condition for “can still leave in this time step according to the capacity” is
Nlink < int(Clmk) OR [ Nlink = ’int(Clmk) AND rand < Clink — int(Clmk) ] ,

where Ci;ni the capacity of the link in vehicles/second, Ny is the number of vehicles which already
left the link during the same time step, rand is a random number between 0 and 1, and int(x) is
the integer part of z.

Passings allow the model to handle vechicles with different maximum velocities, for example
cars and buses. In this case, priority queues are necessary.

Note that the simulation runs on pre-computed route plans, as explained below. Such a simu-
lation can become “stuck” or grid-locked, for example when a loop of full links forms, and the first
car on each of these links wants to move into another of these full links [15, 16]. In order to prevent
this, we remove vehicles that are first in a queue and have not moved for 7,4 time steps of the
simulation. For the simulations in this paper, we used T,q;; = 300 seconds (= 300 simulation time
steps). In the iterative procedure (explained later), many such vehicles were removed in the first
iterations, but their number is less than 0.5% in the 40th iteration (Fig. 2 c).

3 Previous results on a Dallas case study

We compared the queue model (QM) with two other, more realistic micro-simulations in the context
of the TRANSIMS Dallas—Fort Worth case study [17]. These micro-simulations were PAMINA [18,
15] and the TRANSIMS micro-simulation [16, 19]. Comparisons of link densities and of accessibility
can be found in [20]; comparisons of turn counts (also with field data) can be found in [21]. For
these studies, all three simulations used the same trip table (origin-destination matrix), and they
used the same router for iterations between simulation and re-routing. The major result of these
comparisons was that the results of all three simulations were remarkably similar. This indicates
to us that deviations from reality are at the current stage of research probably to a larger extent
caused by the travel demand generation algorithms and by the routing algorithm than by the
micro-simulations.

4 Simulation results on Portland

In this paper, we want to concentrate on results for Portland (Oregon), which is the study area for
the next TRANSIMS case study.



4.1 Activities and iterative replanning

TRANSIMS [10], in its full design, uses data on demographics and on transportation infrastructure
as input. The following steps are then performed:

e Synthetic population disaggregation: As the first step, TRANSIMS generates a synthetic
population from the demographic data [22], that is, TRANSIMS looks at synthetic individuals
and their decision-making process rather than at the behavior of aggregated quantities. The
synthetic individuals possess many relevant attributes such as the number of persons living
in the same household or the number of cars per family.

e Activities generation: Travel demand is generated via activity patterns and activity loca-
tions. This synthetic population is then combined with the land use data to produce activity
assignements. This basically tells us where a person works and what her other schedules are.

e Modal and route choice: A modal choice and routing module generates explicit “travel
plans” for each synthetic individual.

e Travel: The micro-simulation (such as the queue model presented in this paper, or more
realistic micro-simulations) executes all travellers’ plans simultaneously and thus computes
the nature of the interactions between travellers, especially congestion.

It is well-known that the above steps cannot be performed uni-directionally because backward
causalities exist. For example, congestion will make people change their mode of transportation
and/or their routes. If switching mode or route does not help enough, they may change their
activity locations and/or their activity schedule.

TRANSIMS (and several other projects, e.g. [6, 4, 7, 8, 5]) approach this problem via feedback,
i.e. iterations between the modules. Initial activities and travel plans are generated, the micro-
simulation runs based on these plans, some synthetic travellers change modes and/or routes, the
micro-simulation is run again, etc., until some stopping criterion is fulfilled.

For the Dallas case study, the activities generation module was not yet in place. Thus, the
Dallas case study used conventional trip tables as a starting point and essentially performed an
assignment [23] of the trip table on the network, except that the trip tables were explicitly time-
dependent, the assignment was performed on the level of individual drivers, and the dynamics of
congestion and queue spill-back (and much more) were explicitely and realistically represented.

The activities used for this paper came from a simple home-to-work trip generation module [24].
This is not done with the intention of being as realistic as possible but with the intention of
understanding the dynamics of the computational process by using a simplified partial problem.
The input data here is (i) a list of all synthetic individuals in the simulation who work, and (ii) a list
of all workplaces. The problem is to match workers and workplaces, thus generating home-to-work
trips. This assignment is done using a distance-based preference function [24]. The version that is
the basis for this paper is in fact a very simple gravity model, where the probability to accept a
workplace at travel time 7 is proportional to 1/7. Since we have approximately 500 000 workers, this
activity set leads to approximately 500 000 trips, all between 4am and 10am. Improvements in this
module are expected both because of the use of high sophisticated activity-based modules [25, 26]
and because of further improvements of our simplified home-to-work method [27].

7



Routing is done using time-dependent fastest path. Link travel times are given in 15-minute
aggregates from the last iteration of the microsimulation. For the initial route plan set, free flow
speeds on the links are used. Travellers only have cars available; the integration of other modes is
currently being done but not yet operational. For route re-planning, we only change routes for a
fraction of the population. This fraction is approximately 5%, and selection is done with a heavy
bias towards individuals who have not re-planned their route for a large number of iterations ( “age-
dependent re-planning”, [18]). By iterating this process, we reach a relaxed state, where no more
changes are observed from one iteration to the next, except for random fluctuations. For morning
peak simulations, this typically takes 20 to 40 iterations, see Fig. 2.

The network that we used was the same that the Portland Metropolitan Planning Organization
(“Portland Metro”) uses for their emme/2 runs (see below). The important information for our
model were: length of links, capacity of links, free flow speeds or speedlimits, and storage capacity
for full link (computed via length and number of lanes). Except for the storage capacity, this is the
same information that is used for traditional assignment. The network has 20,024 uni-directional
links and 8,564 nodes.

We simulated traffic between 4am and noon; in order to simulate these 8 hours with half a
million trips on the above network, we needed about 17 minutes on a 250 MHz SUN UltraSparc
CPU. Computational speed on a Pentium CPU should be about the same or faster. Routers can
compute more than 100 trips per second in the same situation, which means that re-routing 5% of
500 000 trips takes less than 5 minutes. This means that one iteration takes about 22 minutes, and
the 40 iterations necessary for relaxation take about 15 hours, all on a single CPU.

4.2 Field data

We had traffic count data available for about 450 locations. These locations appear along a set of
“cutlines” that have been identified by the Portland Metro travel forecasting staff. The cutlines are
established to measure the major flows into and out of a central area, or between suburban and
downtown, or suburban and outlying commercial areas. These cutlines and locations are believed
to be significant in measuring traffic volumes for the region, and have been in use for several years.
Since all of our other data refers to the year 1994, we will also only use field data for that year.

The data is typically collected for AM and PM peak periods, and during each peak period for a
one-hour and a two-hour interval. In this paper, we will concentrate on the one-hour data, which is
typically collected either between 7 and 8 am, or between 7:15 and 8:15 am. The difference between
the one-hour and two-hour flow rates is not enormous and will be neglected for this paper. More
detail on this data will be published elsewhere [28].

4.3 emme/2 results

For comparison, we also have results from a Portland emme/2 [29] AM peak assignment available
(Fig. 3). These results were again provided by the Portland MPO (Portland Metro) and were run
on the same network that we were using. Yet, we are not using the same origin-destination table as
the emme/2 assignments since we are generating transportation demand via activities as described
above. For that reason, differences between our model results and Portland Metro’s model results
can be caused by all different modules involved, i.e. the travel demand generation, the routing, or



the model for the traffic dynamics. A study that investigates this into more detail would certainly
be useful, but it is beyond the scope of this paper.

4.4 Queue model simulation results

Fig. 4 shows results of our microsimulation-based assignment using the simplified home-to-work
activities. As mentioned earlier, the simulations run on the same network as the emme/2 assignment
except that some additional information is needed in order to get the storage capacity of the links.
We show results of the 40th iteration of the feedback process.

The plots show average hourly speeds on all links according to the legend; red links have low
speed, usually caused by congestion. Underneath, links are marked in light gray, with the width
corresponding to their capacity, in order to identify high-capacity links.

Clearly, even after many iterations, there remains a significant number of bottlenecks that
prevents traffic from going to their destinations. This is most probably due to an over-estimation of
the traffic demand in the demand generation module, which was not part of this study. As stated
above, improvements in this module are expected both because of the use of high sophisticated
activity-based modules [25, 26] and because of further improvements of our simplified home-to-
work method [27]. However, another effect is that simulations such as ours cannot “push” demand
through bottlenecks at a rate higher than capacity. So when demand at bottlenecks is higher than
capacity, traffic will jam up, and the queues will spill back, delaying other parts of the network, and
potentially leading to grid-lock. This is in contrast to traditional assignment, where bottlenecks
show up as links with a so-called V/C-ratio of larger than one (which is physically impossible),
without any direct dynamic effect on other parts of the network. Fig. 3 indeed shows several such
links.

Fig. 5 shows comparisons to the emme/2 assignment for the 7-8am period. The shown volumes
are hourly volumes. There are two dominant features when compared to the emme/2 assignment:
(i) we have much more traffic northbound across the bridges. This comes out of assigning too
many workplaces in Washington to workers living in Oregon, see [24]. Better sets of workplace
assignments should correct this. (ii) We have significantly less flow on 1-84 westbound, which is the
somewhat zigzagging green line extending east from downtown. Further inspection yields that this
is mot the result of not enough traffic but rather of too much traffic, which jams up when it tries
to reach the bridges across the Williamette River and then spills back into the interstate. This is
exactly the effect described above, that bottlenecks lead to queues, which spill back through the
system. Similar effects, although to a lesser extent, can be found on some other of the freeways,
especially where they merge and upstream from there.

As stated above, this effect is a consequence of a more realistic representation of one aspect
of traffic dynamics, i.e. queue spillback. However, it seems that we are over-estimating the queue
formation, i.e. we are predicting speeds that are too low when compared to reality. In order to
obtain some preliminary insight into how close we are to reality, a comparison between simulation
results and actual counts, both for 1994, is shown in Fig. 6. The emme/2 results are included for
comparison. One notices that, in the average, our simulation results systematically underpredict
traffic flows, wheras the emme/2 results seem less biased. Apart from that, we think that the quality
of our results is encouragingly good when compared with the emme/2 results and when taken into
account how simple our method is.



Tables 2 and 1 quantify this statement. The two tables compare the field data with the emme/2
results and with the queue model results, respectively. The data is aggregated into classes according
to the field flow measurement. The first column shows these classes, in units of vehicles/hour. The
second column shows the number of entries for each class.

The third and fourth columns show the mean absolute and relative bias in each of the classes,

1.e.
1 N 1 .

¢ 9

and
babs

(Z)e

where N, is the number of links in a class, z; is the flow from the model for link 4, Z; is the flow in
the field data, and the sum goes over all links in the class. (Z). is the mean value for the field data
for class c. Positive values for b,,; here mean the models are systematically over-estimating flow. —
And indeed, our observation regarding systematic bias is confirmed: Our simulations systematically
underestimate counts except for links with little traffic. emme/2 systematically over-estimates, but
to a lesser degree.

The fifth and sixth columns show the mean deviation from the field data, i.e.

brel =

1 .
Aaps = FCXZ: |z — Zi

and
dabs

(@)
Interestingly, in this value the quality of our simulation results and of the emme/2 results are
comparable except for the links with the highest flows. We attribute this to our “jams on the
interstates” as explained above, and we expect this to get better with somewhat more sophisticated
methods for demand generation [28].

The seventh and eighth columns show the root mean square deviation from the field data, i.e.

drel =

and
var

Again, our results have a similar quality as the emme/2 results, except for the class with high flows.

5 Summary

We presented a simplified traffic micro-simulation. This micro-simulation is consistent with a micro-
scopic approach to demand generation, that is, it operates on individual route plans. The approach
is based on the simulation of queues, where vehicles can leave a queue only if capacity restrictions
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allow it and if there is space on the destination link. In addition, a vehicle needs to spend at least
the free flow speed travel time on a link. This means that situations where demand is larger than
capacity automatically lead to queue formation, and because of limited “storage” capacity on the
link, the jam will eventually spill back through the network. The model needs emme/2 type network
data as input, plus the number of lanes to compute the storage capacity.

We showed a first application of this model for Portland. The emme/2 network that Portland
Metro uses has 20000 links. We generated about half a million home-to-work trips by a simple
heuristic approach and ran them through this network. Feedback iterations were used to relax the
routes; results of the final iteration were shown and compared to emme/2 results and to field data.
We are encouraged by the observation that, in spite of the simplicity of our approach and except
for high flow links, our results have about the same quality as the emme/2 results. We attribute
the deviations on high flow links to an overestimation of demand for our model, and we expect
this to be improved with more sophisticated demand models, one of them [27] only slightly more
complicated than the one used here.

We think that the fact that we can run the complete microscopic dynamic assignment of half
a million trips on a 20000 link network in about half a day on a single workstation CPU is an
astounding achievement. Clearly, technology has enabled us to make a big jump in what is feasible,
and much work remains to be done to make these opportunities useful for transportation planning.
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class n mean bias mean err RMS err

<250 99 93 ( 64%) 155 (1 106%) 222 ( 152%)
250-500 121 -1 (-0%) 180 ( 49%) 240 ( 65%)
500-750 83 -87 (-14%) 227 ( 37%) 291 ( 47%)
750-1000 42 -165 (-19%) 272 ( 31%) 342 ( 39%)
(27%) (
( 32%)

1000-1500 57  -196 (-17%) 327 (27%) 462 ( 39%)
>1500 25  -615 (-26%) 776 ( 32%) 1038 ( 43%)

Table 1: Quantitative comparison between our model results and counts from reality. The results
are separated into classes, shown in column 1, according to the field data value. The unit is
vehicles/hour. The second column shows the numbr of entries for each class. The third and fourth
columns show the mean absolute and relative bias in each of the classes. Negative numbers mean
that the model systematically under-estimates flows in this class. The fifth and sixth columns show
the average deviation from the field data, whereas the seventh and eight columns show the root
mean square deviation from the field data.

class n mean bias mean err RMS err

<250 99 85 (58%) 148 (101%) 263 ( 180%)
250-500 121 61 ( 17%) 194 ( 53%) 258 ( 70%)
500-750 83 57 ( 9%) 213 ( 34%) 301 ( 49%)
750-1000 42 104 (12%) 317 ( 37%) 379 ( 44%)
1000-1500 57 141 (12%) 366 ( 31%) 477 ( 40%)

>1500 26 -61 ( -3%) 504 ( 22%) 647 ( 28%)

Table 2: Comparison between field data and emme/2 results obtained from the Portland Metropoli-
tan Planning Organization from their “standard am-peak 1994” run. The columns are the same as
in Table 1. These results have fewer bias than our simulation runs (column three), and they are
better for the highest flow counts. Apart from this, the quality of the quantities in the table looks
similar.
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Figure 1: Fundamental diagrams flow vs. density and velocity vs. density for the Q-model when
run in a closed loop.

Figure 2: Different indicators of routing relaxation. (a) Sum of all travel times vs. iteration number.
(b) Number of vehicles in the simulation as function of the time-of-day. Different curves for different
iteration numbers. (c) Number of removed cars. As explained in the text, cars that are first in the
queue but do not move for 7,,,;; time steps because their destination link is full are removed from
the simulation.

Figure 3: Result of the emme/2 assignment. The width of the light gray denotes capacity. Green,
red, and dark red colors mark links with “emme/2 volume”-to-capacity ratios 0.5-1, 1-1.2, and
> 1.2, respectively.

Figure 4: Result of our own route assignment using simplified home-to-work trips, and feedback
iteration between a fastest path re-planner and the queue model (QM) micro-simulation. The width
of the light gray denotes again capacity. The colors denote average hourly speeds, as indicated in
the legend. Averaged from 7 to 8 am.

Figure 5: Using the same simulation results as in Fig. 4 and comparing them to the emme/2
assignment. The width of the light gray denotes again capacity. The colors show differences
between our simulation results and the emme/2 assignment flow results; red means that we have
more flow, green means that we have less flow. Averaged from 7 to 8 am.

Figure 6: Comparison of: (i) field data from Portland (black line); (ii) our simulation results
(vertical spikes); (iii) results from the Portland emme/2 run (crosses). The x-axis is an arbitrary
numbering of the measurement sites; y-axis shows hourly flows. The sites are ordered according to
their field data hourly flow values. Our simulation results are in general too low when compared
to the counts, wheras the emme/2 results seem to be more correct in the average. However, the
quality of the solutions seems comparable. This statement is quantified in Tables 2 and 1.
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